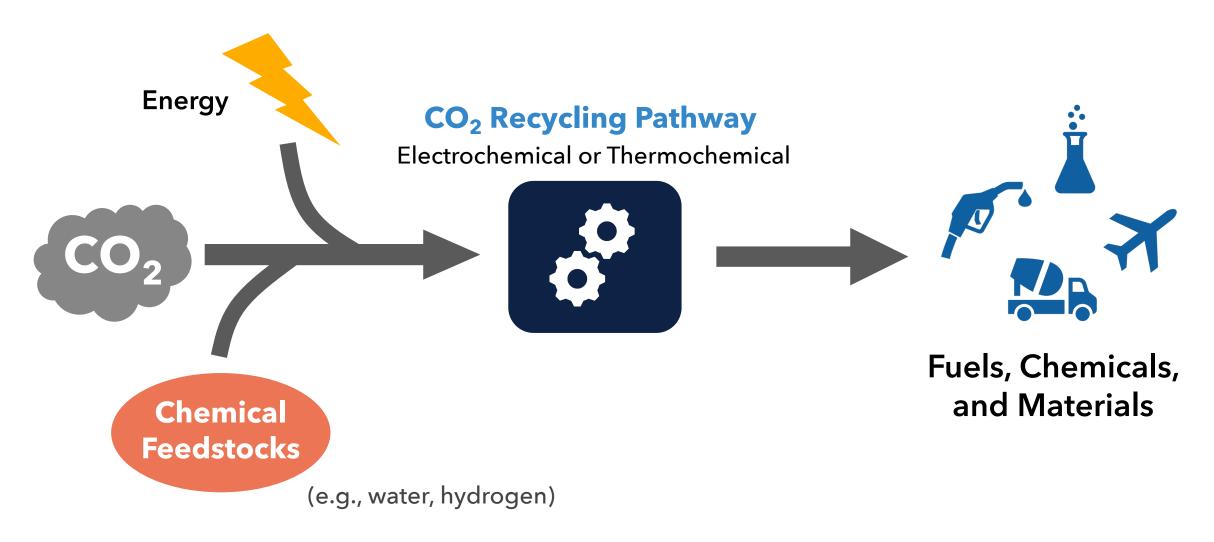


Opportunities and Limits of CO₂ Recycling in a Circular Carbon Economy



The need for CO₂ recycling

- We rely on many products that are carbon-intensive to produce but have limited alternatives
 - Aviation fuels, concrete, plastics, etc.
- 30% of global CO₂ emissions are in 'hard to abate' sectors

CO₂ recycling – converting CO₂ into valuable products

An unrealized opportunity...so far

- Chemical processes that consume CO₂ instead of generating it
- Reduces emissions of production
- Products have economic value in existing markets
- CO₂ recycling has remained difficult to deploy
- Need well-informed policy support

We modeled 19 CO_2 recycling pathways to provide a better understanding of the current state of CO_2 recycling, opportunities, and challenges to reach global scale.

Sections of Analysis

- 1. Estimated Cost of Production and Cost Sensitivities
- 2. Life-Cycle Carbon Abatement Potential
- **3. Effective Carbon Price**
- **4. Critical Infrastructure Needs**
- **5. Policy Recommendations**

Eight electrochemical pathways

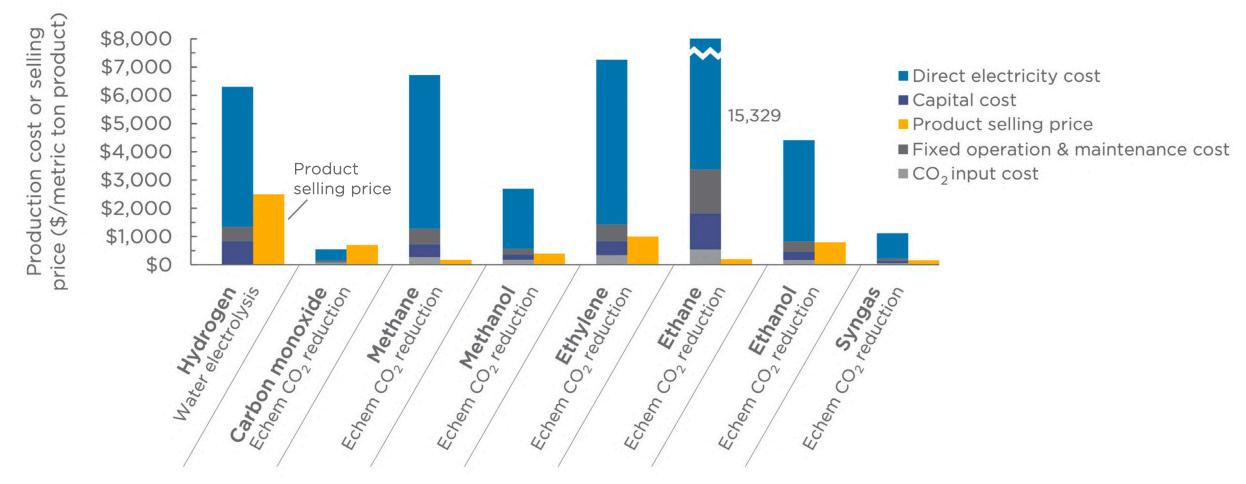
Product	Process	Feedstocks
Hydrogen	Water electrolysis	H ₂ O
Carbon monoxide (CO)	Electrochemical CO ₂ reduction	CO ₂ , H ₂ O
Methane		
Methanol		
Ethylene		
Ethane		
Ethanol		
Syngas		

Eleven thermochemical pathways

Product	Process	Feedstocks
Light olefins incl. ethylene	CO ₂ hydrogenation	CO ₂ , H ₂
	Fischer-Tropsch (F-T) synthesis	CO, H ₂
Methane	Sabatier process	CO ₂ , H ₂
Methanol	CO ₂ hydrogenation	CO ₂ , H ₂
Ethanol	Lignocellulosic biomass fermentation	Lignocellulosic biomass
Syngas	Reverse water-gas shift (RWGS) reaction	CO ₂ , H ₂
Jet fuel	CO ₂ hydrogenation	CO ₂ , H ₂
	Fischer-Tropsch synthesis	CO, H ₂
Urea	Bosch-Meiser process	CO ₂ , NH ₃
Precast concrete	Concrete carbonation curing	CO ₂ , concrete
All concretes	CarbonCure process	CO ₂ , concrete

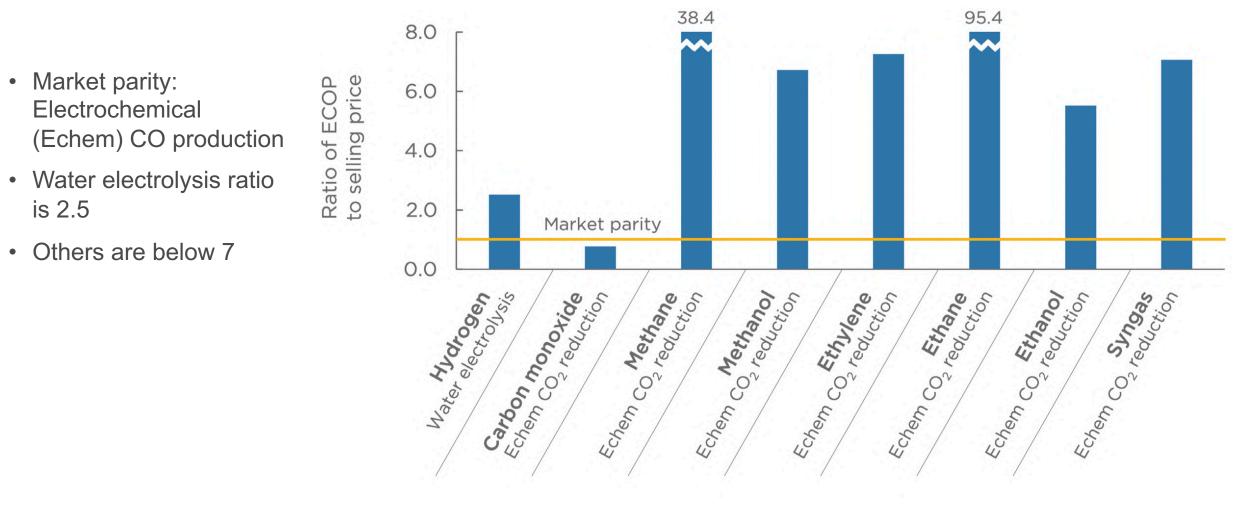
Analysis design

- Pathways consume low-carbon inputs
 - Renewable electricity and chemical feedstocks that are made electrochemically with renewable power
- Pathways scaled to supply current global demand for their product
- Globally representative cost estimates
- Market parity: cost of production equals selling price

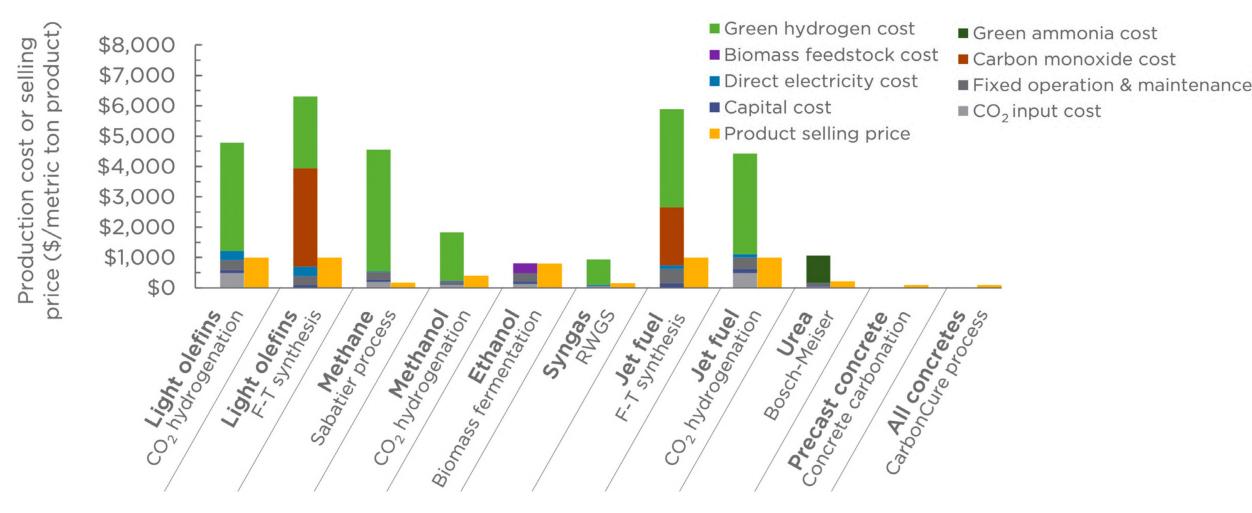

Key numerical assumptions

Parameter	Value
Renewable electricity price	\$0.095/kWh
Green hydrogen feedstock price	\$6.3/kg H ₂
CO ₂ feedstock price	\$50/tCO ₂
Electrolyzer capital cost	\$1,000/kW

- Electricity price is globally representative and includes non-generation costs
- CO₂ feedstock is from point-source carbon capture
- Input prices may fall significantly over time and lower costs are available today in limited contexts


1. Estimated Cost of Production (ECOP)

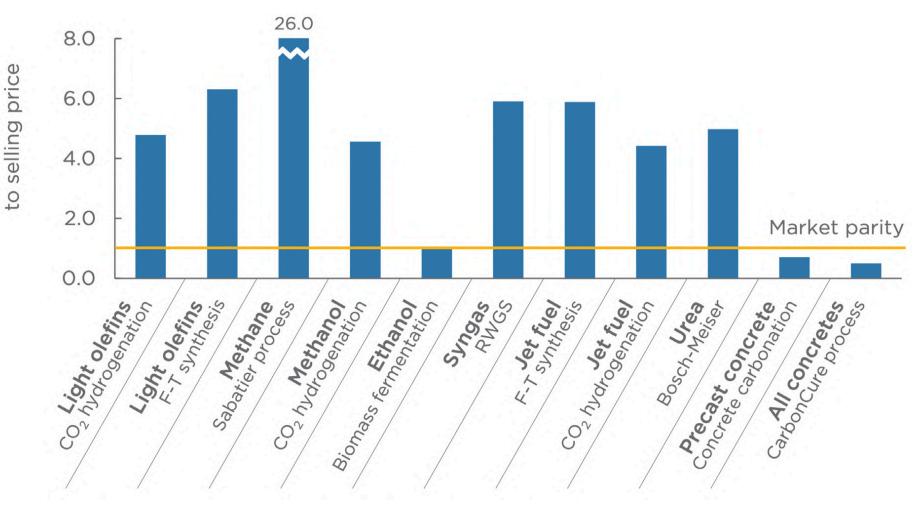
Costs of electrochemical pathways are high, and dominated by electricity costs



• But capital cost and fixed operation & maintenance alone are greater than selling price for many pathways

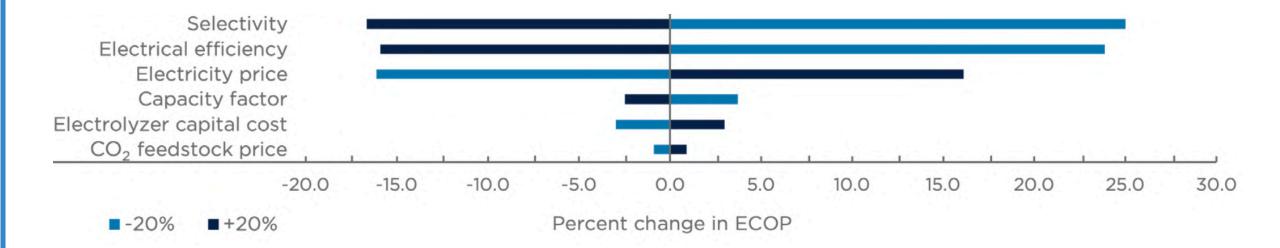
Ratio of ECOP to selling price for electrochemical pathways demonstrates distance from market parity

Costs of thermochemical pathways are slightly lower, and main component is green hydrogen feedstock cost



• Non-hydrogen costs exceed selling price for many pathways

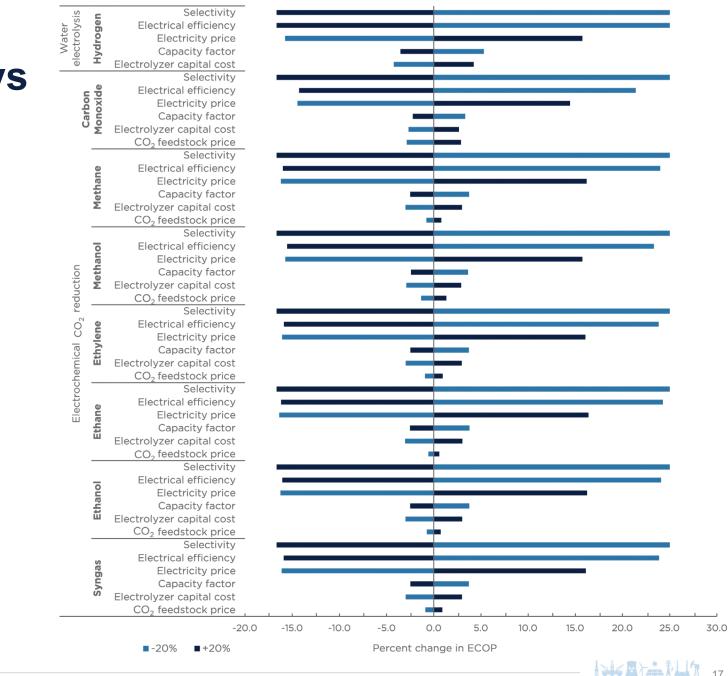
Ratio of ECOP to selling price for thermochemical pathways is lower, but far exceeds market parity


 Market parity: Ethanol from lignocellulosic biomass and the concrete production pathways Ratio of ECOP

 Others have ratio below 6

Sensitivity analysis shows key cost drivers

Percent change in ECOP as a result of a 20% change in an input value

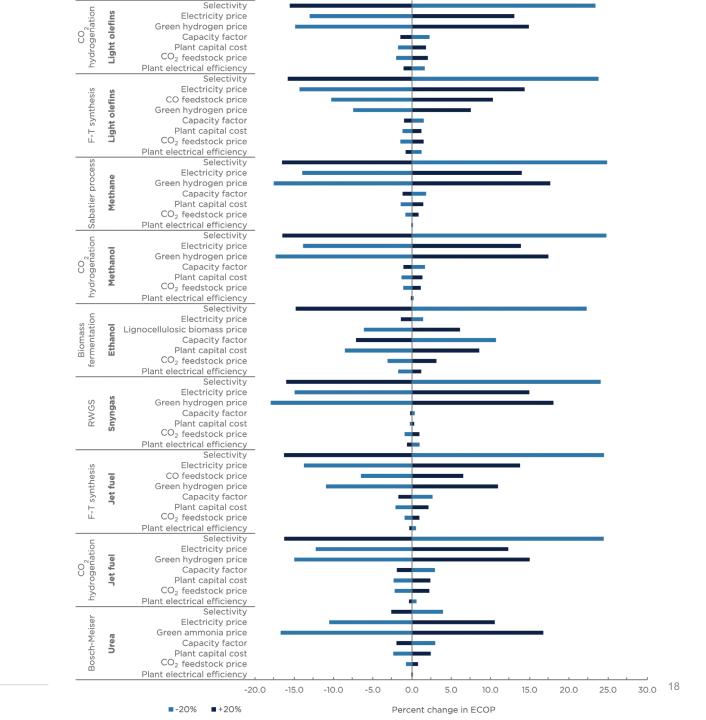

Electrochemical pathways

Key cost drivers:

- **Selectivity** (ability to avoid unwanted side reactions)
- Electrical energy efficiency
- Electricity price
 - Slower to improve

Weaker cost drivers:

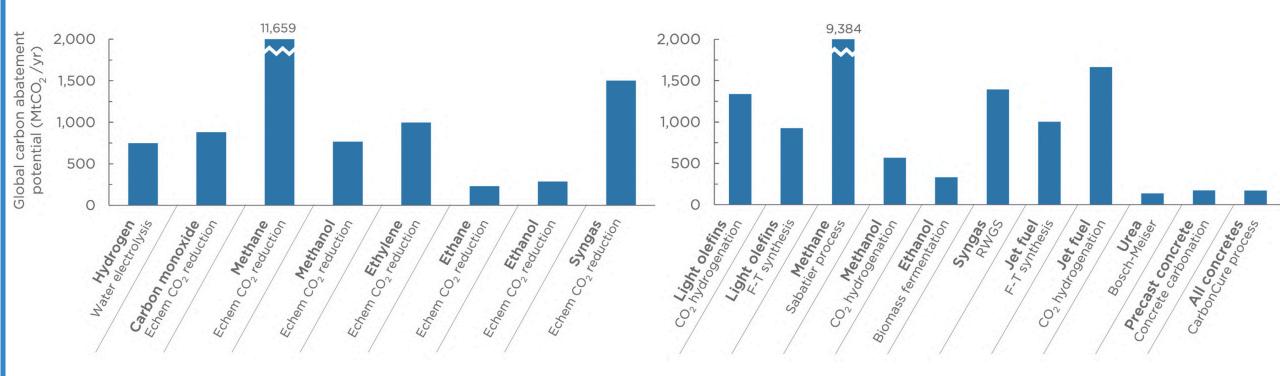
- Capacity factor
- Electrolyzer capital cost
- CO₂ feedstock price
 - DAC would have small effect on ECOP


Thermochemical pathways

Key cost drivers:

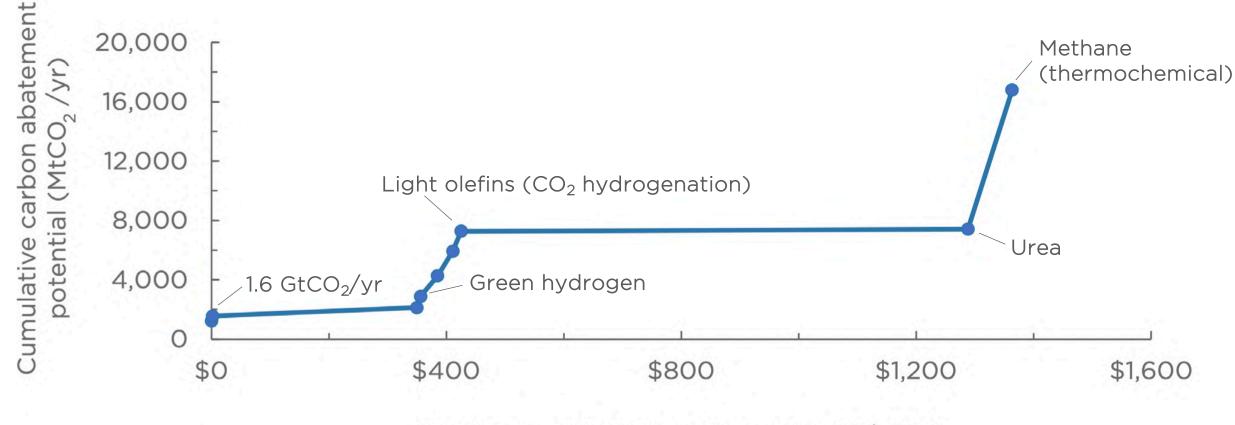
- Selectivity
- Electricity price
- Hydrogen price

Weaker cost drivers:


- Capacity factor
- Capital cost
- CO₂ feedstock price

2. Life-Cycle Carbon Abatement Potential

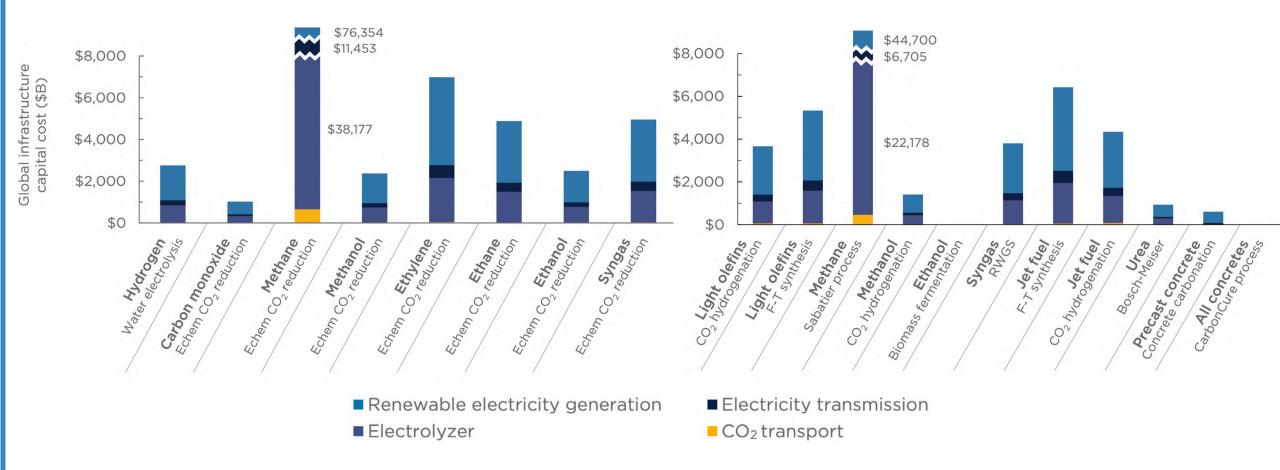
Pathways have a combined carbon abatement potential of 6.8 GtCO₂/yr


Contingent on use of low-carbon electricity and feedstocks

Carbon abatement is emissions reduction of displacing conventional production with CO₂ recycling

3. Effective Carbon Price and Gross Subsidies

Cumulative abatement potential available at market parity as a function of effective carbon price


Breakeven effective carbon price $(\frac{1}{tCO_2})$

4. Critical Infrastructure Needs

Pathways have massive global consumption of electricity and feedstocks

- Pathways consume a combined **36,700 TWh/yr** of low-carbon electricity at global scale
 - Current global electricity consumption: ~26,000 TWh/yr
- Most thermochemical pathways consume ~80 MtH₂/yr each as feedstock low-carbon hydrogen
 - IEA NZE in 2030: 140 MtH₂/yr global low-carbon hydrogen supply
- Pathways consume a combined **5.3 GtCO₂/yr** as feedstock CO₂
 - Currently ~0.2 GtCO₂/yr consumed globally in CO₂ recycling

Trillions of dollars of capital investment in global critical infrastructure needed

- Majority renewable electricity capacity (8,400 GW total)
- CO₂ transport capital costs comparatively negligible

Key findings

- Costs of CO₂ recycling are high and dominated by input costs (electricity and feedstocks)
- Pathways can be classified by ratio of ECOP to selling price
- Main cost drivers are catalyst selectivity, catalyst energy efficiency, and prices of inputs
- Pathways have a combined carbon abatement potential of 6.8 GtCO₂/yr
- High effective carbon price consistent with market parity
- Trillions of dollars of critical infrastructure needed per pathway, mainly renewables and electrolyzers

5. Policy Recommendations

Ensure CO₂ recycling pathways consume low-carbon inputs

High carbon abatement can only be achieved using low-carbon electricity and low-carbon H₂, syngas, and/or ammonia feedstocks.

Can use CO₂ from direct air capture or biomass

Prioritize pathways strategically

For market scale: (market parity)

- Electrochemical CO production
- Ethanol from lignocellulosic biomass
- Precast concrete carbonation curing
- CarbonCure concrete process

For early market entry: (ECOP to selling price ratio < 5)

- Green hydrogen
- CO₂ hydrogenation to light olefins, methanol, and jet fuel
- CO₂ recycling urea production

For further technological innovation: (ratio < 8)

 All pathways (incl. Echem CO₂ reduction, F-T synthesis, RWGS)

Deprioritize: (ratio > 25)

- Electrochemical methane and ethane production
- Sabatier process methane production

Use RD&D agenda focused on catalyst innovation to bring down costs

Improving the activity and selectivity of catalysts will reduce electricity/feedstock costs and alleviate demand on critical infrastructure.

Catalyst performance is an efficiency lever

Create demand pull for early market CO₂ recycling products

Demand pull policies can create early markets for CO₂ recycling and help achieve scale.

Public procurement, financial incentives, milestone payments

Promote buildout of critical infrastructure

Accelerated buildout of low-carbon electricity, transmission, electrolyzers, and CO₂ transport infrastructure is needed to enable CO₂ recycling at scale.

Remove barriers to infrastructure projects and provide/enable investment

Our findings can provide granularity for American Jobs Plan

Initial plan included \$35 billion in climate innovation and public procurement of cleaner cement.

 Use findings to guide CO₂ recycling innovation funding and define public procurement standards

Include demonstration of market-ready CO₂ recycling pathways in American Jobs Plan

Initial plan included \$15 billion in climate demonstration (CO₂ recycling not listed) + 15 low-carbon hydrogen demonstration and 10 carbon capture retrofits

Include the following CO₂ recycling pathways:

- Electrochemical CO production
- CO₂ hydrogenation to light olefins, methanol, and jet fuel
- CO₂ recycling urea production

Thank You

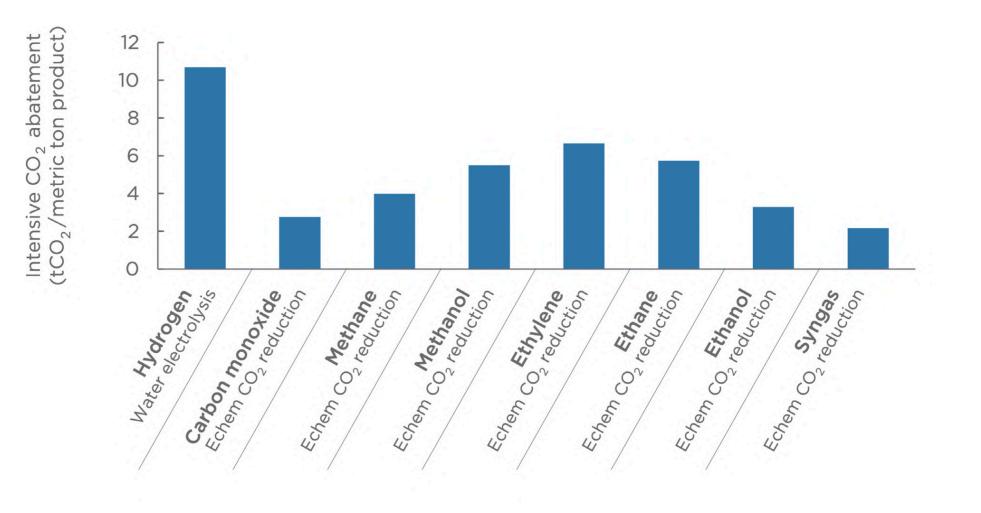
bhardwaj.amar@columbia.edu

Technical inputs and assumptions

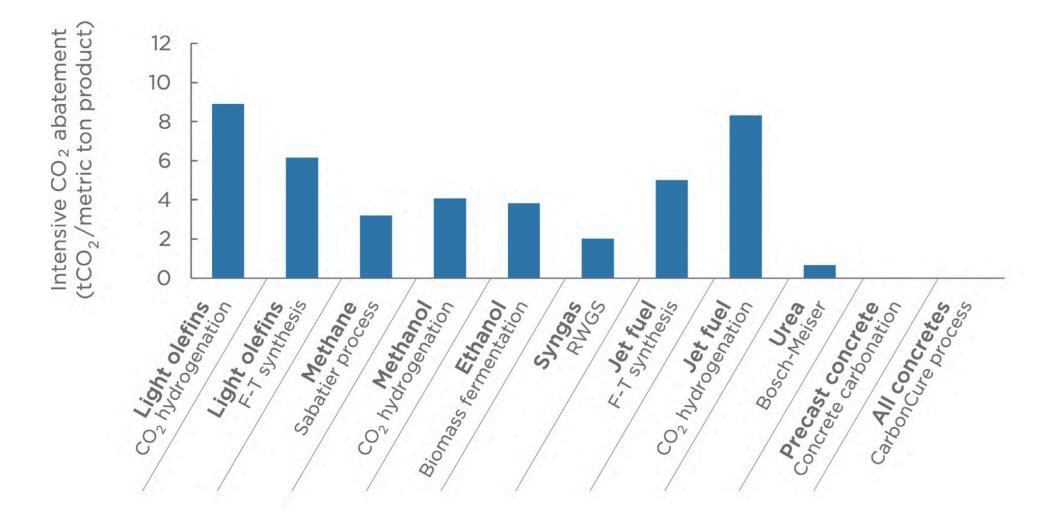
Process	Product	Global demand (Mt product/yr)	Gravimetric energy density (kWh/kg)	Echem electrical energy efficiency	Thermochem plant electrical energy efficiency	Hydrogen selectivity	Carbon selectivity	Faradaic efficiency	Conversion	References
Electrochemical pa	thways									
Water electrolysis	Hydrogen	70	39.4	0.75			0	1.0	1.0	[10],[20],[49]
Electrochemical CO ₂ reduction	Carbon monoxide	320	2.3	0.55	7	7	1.0	1.0	1.0	[60-63]
Electrochemical CO ₂ reduction	Methane	2,920	15.2	0.53		\overline{a}_{2}	0.57	0.56	0.90	[64-66]
Electrochemical CO ₂ reduction	Methanol	140	6.4	0.54			0.42	0.59	0.90	[44],[67-70]
Electrochemical CO_2 reduction	Ethylene	150	13.9	0.48	-		0.51	0.52	0.90	[43],[71-73]
Electrochemical CO ₂ reduction	Ethane	40	14.4	0.41			0.30	0.24	0.90	[74-75]
Electrochemical CO ₂ reduction	Ethanol	87	8.3	0.45			0.65	0.54	0.90	[76-78]
Electrochemical CO ₂ reduction	Syngas	691	3.9	0.51			0.72	0.76	1.0	[79-80]
Thermochemical pa	thways									
CO ₂ hydrogenation	Light olefins incl. ethylene	150	13.9		0.75	0.68	0.36		0.90	[81-85]
F-T synthesis	Light olefins incl. ethylene	150	13.9		0.75	0.64	0.34		0.90	[86-91]
Sabatier process	Methane	2,920	15.2		0.75	0.79	0.72		1.0	[92-94]
CO ₂ hydrogenation	Methanol	140	6.4		0.75	0.75	0.75		0.90	[44],[95-96]
Biomass fermentation	Ethanol	87	8.3		0.75		1.0		0.76	[97-98]
RWGS	Syngas	691	3.9		0.75	1	0.90		1.0	[99-100]
F-T synthesis	Jet fuel	200	11.9		0.75	0.58	0.56		0.90	[50],[101-104]
CO ₂ hydrogenation	Jet fuel	200	11.9		0.75	0.56	0.35		0.90	[19],[83], [105-107]
Bosch-Meiser	Urea	208	2.9		0.75	0.72	1.0		0.88	[108-109]
Concrete carbonation	Precast concrete	5,974			0.75					[110-112]
CarbonCure process	All concretes	33,000			0.75					[113]

Plant assumptions

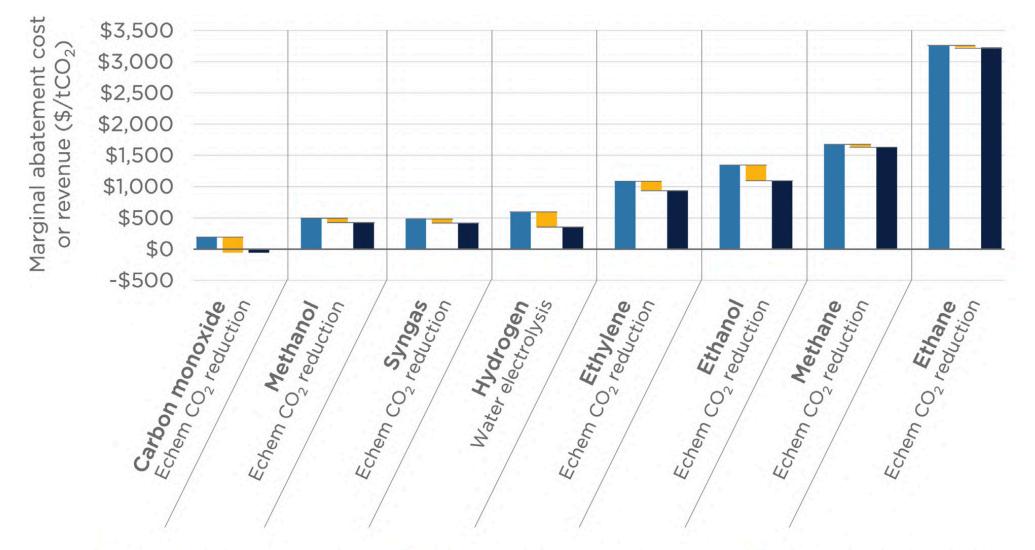
Process	ocess Product		Electrolyzer capital cost (\$/kW)	Plant capital cost (\$/ton/ yr-capacity)	Equipment lifetime (yr)	
Electrochemical pathw	/ays					
Water electrolysis	Hydrogen	0.5	1,000		15	
Electrochemical CO ₂ reduction	Carbon monoxide	0.5	1,000	1	30	
Electrochemical CO ₂ reduction	Methane	0.5	1,000		30	
Electrochemical CO ₂ reduction	Methanol	0.5	1,000		30	
Electrochemical CO ₂ reduction	Ethylene	0.5	1,000		30	
Electrochemical CO ₂ reduction	Ethane	0.5	1,000		30	
Electrochemical CO ₂ reduction	Ethanol	0.5	1,000		30	
Electrochemical CO ₂ reduction	Syngas	0.5	1,000	7	30	
Thermochemical path	ways					
CO ₂ hydrogenation	Light olefins incl. ethylene	0.9	-	2,741	30	
F-T synthesis	Light olefins incl. ethylene	0.9		2,447	30	
Sabatier process	Methane	0.9		2,111	30	
CO ₂ hydrogenation	Methanol	0.9		777	30	
Biomass fermentation	Ethanol	0.9	1	2,226	30	
RWGS	Syngas	0.9		84	30	
F-T synthesis	Jet fuel	0.9	/	3,969	30	
CO ₂ hydrogenation	Jet fuel	0.9		3,320	30	
Bosch-Meiser	Urea	0.9		819	30	
Concrete carbonation	Precast concrete	0.9			30	
CarbonCure process	All concretes	0.9			30	


Financial assumptions

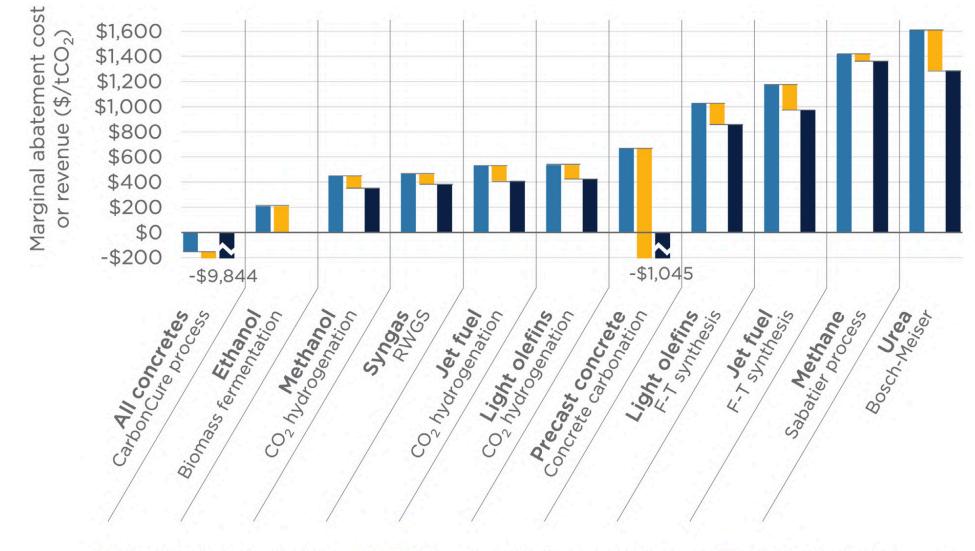
Parameter	Value
Renewable electricity price (\$/kWh)	0.095
Green hydrogen feedstock price (\$/tH ₂)	6,302
CO ₂ feedstock price (\$/tCO ₂) ¹⁶	50
CO feedstock price (\$/tCO)	546
Green ammonia feedstock price (\$/tNH₃)	1,573
Lignocellulosic biomass feedstock price (\$/dry ton)	65
CO ₂ transport pipeline network capital cost (\$/tCO ₂ /yr capacity) ¹⁵	42
Transmission capital cost (\$/kW renewable generation capacity) ⁵¹	300
Renewable electricity carbon intensity (gCO ₂ /kWh) ²¹	25
Weighted average cost of capital (WACC)	5%
Fixed O&M percentage of capex electrolyzer	4%
Fixed O&M percentage of capex thermochemical plant	10%
Capacity factor of renewable mix used to determine GW capacity needs	50%


Results summary

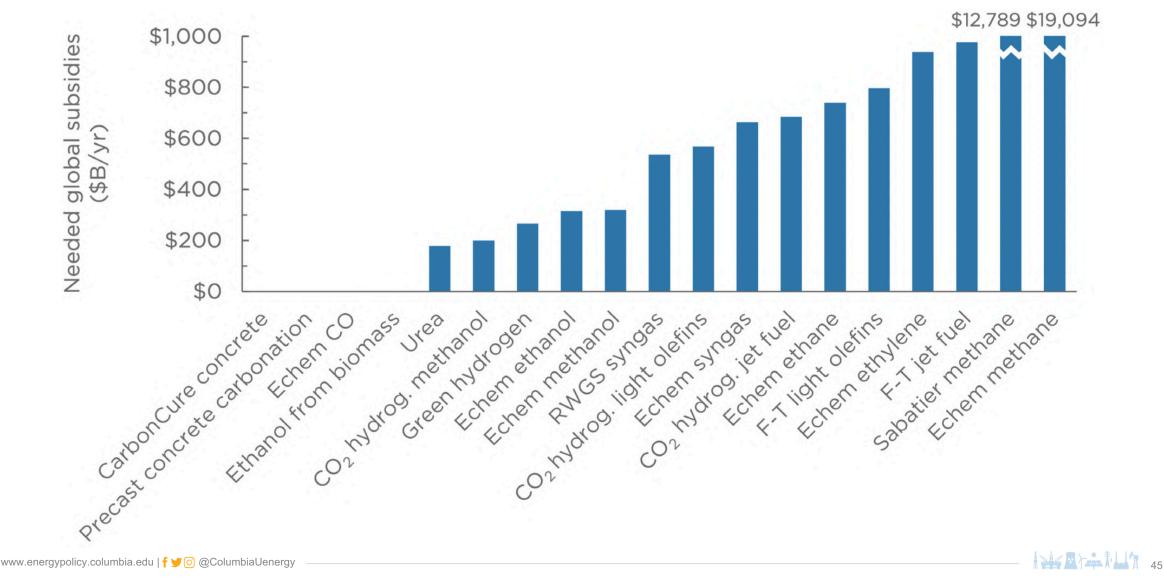
Product	Process	Product selling price (\$/metric ton)	Estimated cost of production (\$/metric ton product)	ECOP/selling price ratio	Carbon abatement potential (MtCO ₂ /yr)	Intensive CO ₂ abatement (tCO ₂ /metric ton product)	Marginal abatement cost (\$/tCO ₂)	Critical infrastructure capital cost (\$B)
Electrochemi	cal pathways							
Hydrogen	Water electrolysis	2,500	6,302	2.5	749	10.7	589	2,757
Carbon monoxide	Electrochemical CO ₂ reduction	700	546	0.8	882	2.8	198	1,023
Methane	Electrochemical CO ₂ reduction	175	6,714	38.4	11,659	4.0	1,681	126,635
Methanol	Electrochemical CO ₂ reduction	400	2,689	6.7	768	5.5	490	2,372
Ethylene	Electrochemical CO ₂ reduction	1,000	7,258	7.3	997	6.7	1,091	6,984
Ethane	Electrochemical CO ₂ reduction	196	18,705	95.4	230	5.7	3,260	4,881
Ethanol	Electrochemical CO ₂ reduction	800	4,416	5.5	286	3.3	1,341	2,488
Syngas	Electrochemical CO ₂ reduction	158	1,116	7.1	1,501	2.2	491	4,961
Thermochemi	ical pathways							
Light olefins incl. ethylene	CO ₂ hydrogenation	1,000	4,789	4.8	1,337	8.9	537	3,661
Light olefins incl. ethylene	F-T synthesis	1,000	6,311	6.3	925	6.2	1,024	5,337
Methane	Sabatier process	175	4,555	26.0	9,384	3.2	1,417	74,048
Methanol	CO ₂ hydrogenation	400	1,824	4.6	570	4.1	448	1,411
Ethanol	Biomass fermentation	800	809	1.0	333	3.8	211	0
Syngas	RWGS	158	934	5.9	1,393	2.0	464	3,797
Jet fuel	F-T synthesis	1,000	5,885	5.9	1,003	5.0	1,174	6,417
Jet fuel	CO ₂ hydrogenation	1,000	4,423	4.4	1,664	8.3	532	4,339
Urea	Bosch-Meiser	215	1,071	5.0	138	0.7	1,611	936
Precast concrete	Concrete carbonation	100	70	0.7	174	0.03	672	612
All concretes	CarbonCure process	100	49	0.5	170	0.01	-156	0


Intensive CO₂ abatement of electrochemical pathways

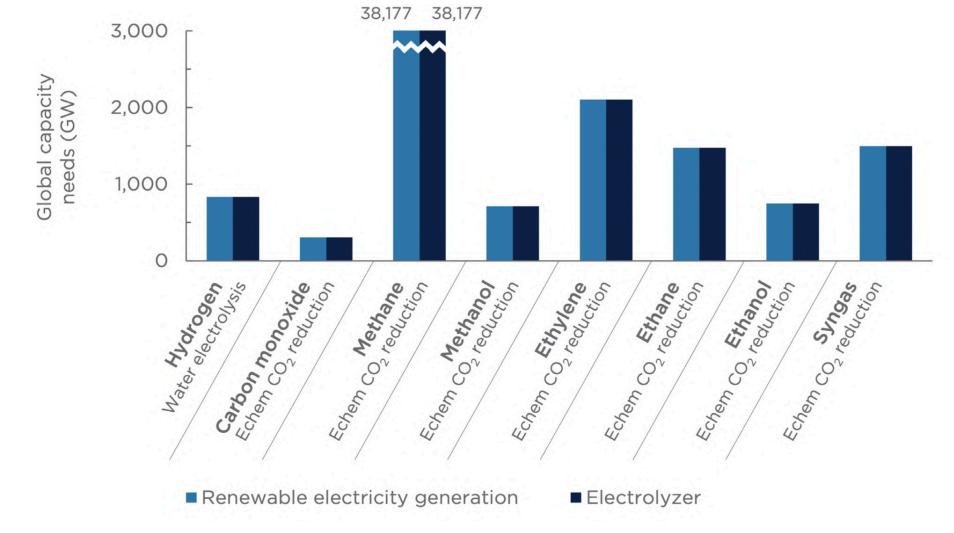
Intensive CO₂ abatement of thermochemical pathways



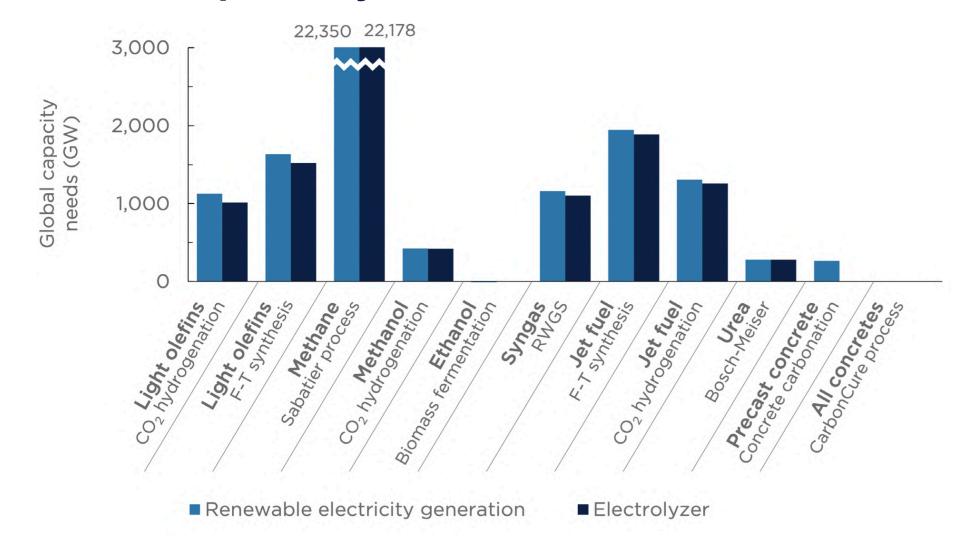
Marginal abatement cost and revenues for electrochemical pathways

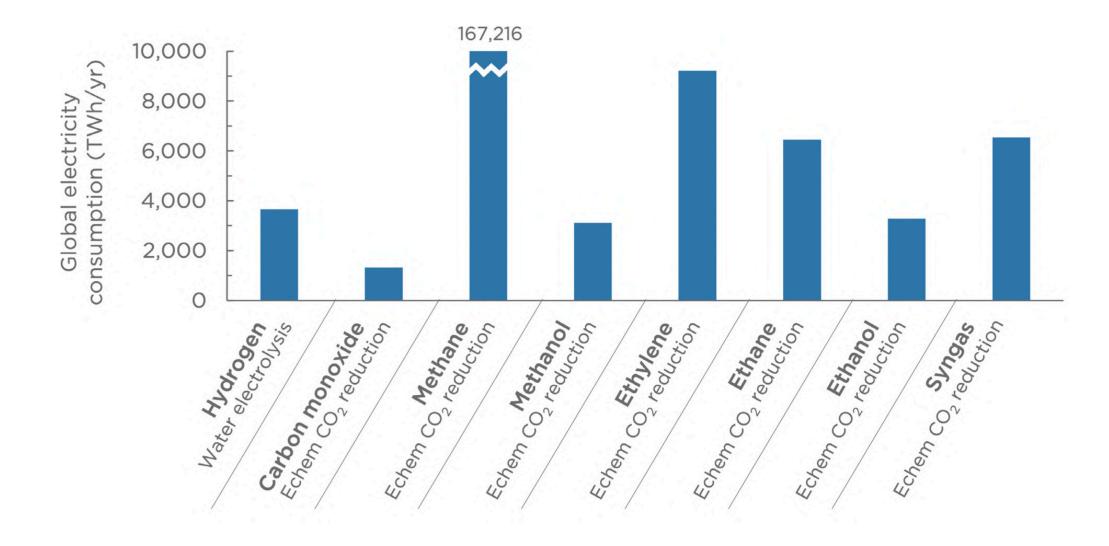

43

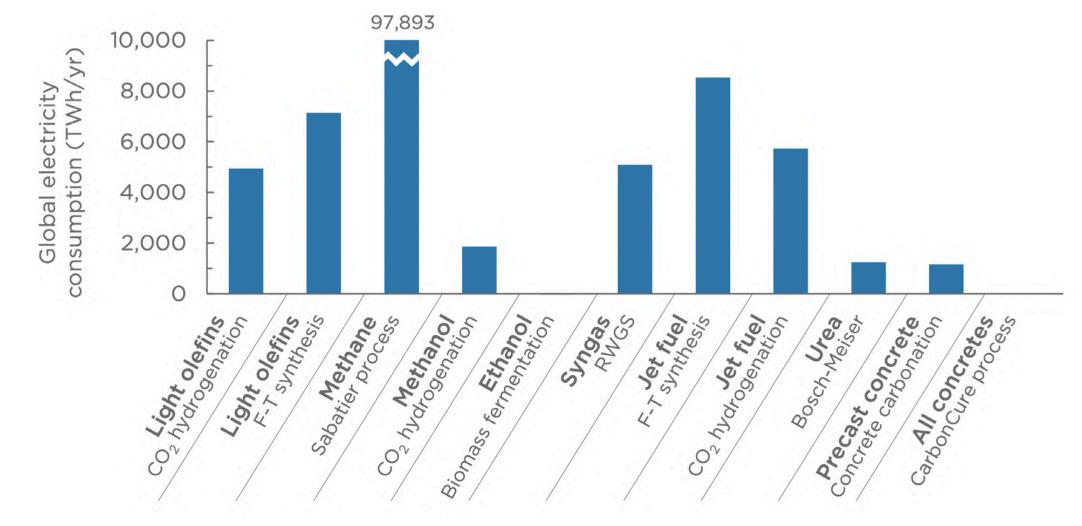
Marginal abatement cost and revenues for thermochemical pathways

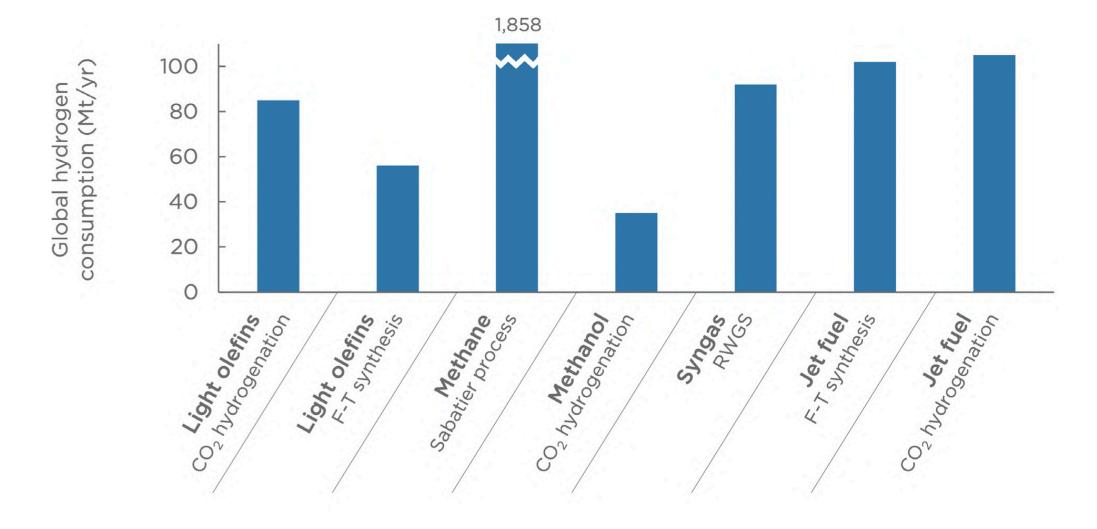


Marginal abatement cost 📕 Marginal abatement revenue 📕 MAC after revenues


Hundreds of billions of dollars in gross global subsidies needed to close cost-price gap


Global renewables and electrolyzer capacity for electrochemical pathways


Global renewables and electrolyzer capacity for thermochemical pathways


Global electricity consumption of electrochemical pathways

Global electricity consumption of thermochemical pathways

Global hydrogen consumption of thermochemical pathways

